Машинное обучение на практике

Вводный практический курс по машинному обучению. Рассматривается полный цикл построения решения: от выделения исходных данных («.xlsx файл») через построение модели и до объяснения конечному заказчику особенностей данных и специфики полученного результата. Теоретические разделы - классификация, регрессия, предсказания, ансамбли – даются в обзорном режиме, в объёме, необходимом для корректного построения и понимания разбираемых примеров.
Курс: EAS-025
Длительность: 24 ч.

Описание

Курс построен вокруг нескольких практических кейсов, содержащих таблицы с исходными данными.

По каждому кейсу проходим полный жизненный цикл проекта машинного обучения:

  • исследование, очистка и подготовка данных,
  • выбор метода обучения, соответствующего задаче (линейная регрессия для регрессии, случайный лес для классификации, К-средние и DBSCAN для кластеризации),
  • обучение с использованием выбранного метода,
  • оценка результата,
  • оптимизация модели,
  • представление результата заказчику.

На дискуссионной части курса обсуждаем стоящие перед слушателями практические задачи, которые можно решить рассмотренными методами.

Разбираемые темы

1. Обзор задачи (1 час – теория).
  • Какие задачи хорошо решаются машинным обучением, а какие им пытаются решать.
  • Что произойдёт, если вместо Data Scientist взять неспециалиста в данной области (просто разработчика/аналитика/менеджера) с ожиданием, что в процессе научится.

2. Подготовка, очистка, исследование данных (1 час – теория, 1 час – практика).
  • Как разобраться в исходных бизнес-данных (и вообще обнаружить в них какой бы то ни было порядок).
  • Последовательность обработки.
  • Что можно и нужно переложить на аналитиков предметной области, а что лучше сделать самому Data Scientist.
  • Приоритеты решения конкретной задачи.

3. Классификаторы и Регрессоры (2 часа – теория, 2 часа – практика).
  • Практический раздел - хорошо формализованные задачи с подготовленными данными.
  • Разница между задачами (бинарная/небинарная/вероятностная классификация, регрессии), перераспределение задач между классами.
  • Примеры классификации практических задач.

4. Кластеризация (1 час – теория, 2 часа – практика).
  • Где и как проводить кластеризацию: исследование данных, проверка постановки задачи, проверки результатов.
  • Какие случаи можно свести к кластеризации.

5. Оценка моделей (1 час – теория, 1 час – практика).
  • Бизнес-метрики и технические метрики.
  • Метрики для задач классификации и регрессии, матрица ошибок.
  • Внутренние и внешние метрики качества кластеризации.
  • Кросс-валидация.
  • Оценка переобучения.

6. Оптимизация (5 часов – теория, 3 часа – практика).
  • Что делает одну модель лучше другой: параметры, признаки, ансамбли.
  • Управление параметрами.
  • Практика выбора признаков.
  • Обзор инструментария для поиска лучших параметров, признаков и методов.

7. Графики, отчеты, работа с живыми задачами (2 часа – теория, 2 часа – практика).
  • Как доступно объяснить происходящее: себе, команде, клиенту.
  • Более красивые ответы на бессмысленные вопросы.
  • Как презентовать три терабайта результатов на одном слайде.
  • Полуавтоматические тесты, какие точки контроля процесса действительно нужны.
  • От живых задач к полному R&D процессу («НИОКР на практике») – разбор и анализ задач от аудитории.

Цели

  • Понять, какие задачи можно решать машинным обучением (и узнать, что Big Data это всего лишь подраздел, а не обязательное требование).
  • Научиться применять начальные методы машинного обучения и с помощью быстрого прототипирования научиться отвечать на вопрос «оценить реальную прибыль от возможного внедрения».
  • Подсветить, какие данные необходимо собирать и что может потребоваться от них в ближайшем будущем. Почему «хотим хранить петабайты» это не всегда просто прихоть.
  • Подготовится к более сложным темам, в частности – к полным решениям реальных сложных бизнес-задач.
  • Посмотреть, как именно машинное обучение стыкуется с классической аналитикой. В частности, убедиться, что не обязательно (и даже вредно) увольнять всех существующих аналитиков для внедрения концепции.

Целевая аудитория

Основная:
  • Аналитики
  • Менеджеры проектов, связанных с данными
  • Технические лидеры / ведущие разработчики в любых проектах, связанных с данными
  • Бизнес-аналитики
Дополнительная:
  • Разработчики
  • Инженеры данных (Data Engineer)
  • Архитекторы, системные проектировщики

Предварительная подготовка

Умение читать простой код на Python и писать на любом скриптовом языке.
После окончания курса выдаётся сертификат на бланке Luxoft Training
Раcписание курса в Цены
Не подходят даты, время или хотите заказать корпоративное обучение для команды?
+
Предложите свой вариант
Онлайн 37 000 руб.
9 900 грн.
Связанные курсы:

Рекомендуемые дополнительные материалы, источники:

Pandas: Seaborn Machine Learning
NULL

Записаться на курс

Выбрать дату
Если Вам не подходят дата и место проведения тренинга, Вы можете оставить заявку на участие в нем в любом из городов, где представлены филиалы Luxoft Training. Для этого выберите вариант "Открытая дата" и укажите желаемое место проведения курса.
Желаемое место проведения курса
Вы можете оставить заявку на корпоративное обучение сотрудников Вашей компании в любом городе России или Украины, выбрав вариант "Другой город"
Фамилия *

Имя *

Отчество

Контактный E-mail *

Компания *

Телефон *

Город *

Комментарий
Оценка и обучение ИТ-специалистов по ключевым направлениям разработки программного обеспечения. Курсы от экспертов-практиков по языкам программирования, системному и бизнес-анализу, архитектуре ПО, ручному и автоматизированному тестированию ПО, Big Data и машинному обучению, управлению проектами и Agile. Luxoft Training – первый учебный центр в России, авторизованный IIBA. Действует скидка 10% на обучение физических лиц.
Остались вопросы?
Связаться с нами
Пользователь только что записался на курс ""
Спасибо!
Форма отправлена успешно.